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Article history: A normalized analytic function f defined on the open unit disk is a Janowski starlike
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analytic functions defined by means of subordination is introduced. Sufficient conditions
are obtained for functions in this class to be Janowski starlike. The results obtained extend
earlier known works.
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1. Introduction and motivation

Let A be the class of all analytic functions f defined in the open unit disk A := {z € C : |z| < 1} and normalized
by the conditions f(0) = 0 = f/(0) — 1.If f and g are analytic in A, then f is subordinate to g, written f(z) < g(2), if
there is an analytic function w, satisfying w(0) = 0 and |w(z)| < 1, such that f(z) = g(w(z)). In case g is univalent in A,
then f is subordinate to g if and only if f(0) = g(0) and f(A) C g(A). Let A and B be complex numbers that satisfy the
conditions |B| < 1and A # B, and let S*[A, B] denote the class of Janowski starlike functions consisting of f € + satisfying
the subordination

zf'(z) 1+4+Az

< .
f(@ 1+ Bz

Without loss of generality, it can be assumed that B is real. If A is also real with |A| < 1, the fact that S*[A, B] = S*[—A, —B]

permits us to assume that B < A. For —1 < B < A < 1, this class was introduced by Janowski and investigated in [1,2].
Several well-known subclasses of starlike functions are special cases of the class S*[A, B] for suitable choices of the

parameters A and B; in particular, when 0 < o < 1,5*[1 — 2a, —1] =: S*() is the familiar class of starlike functions

of order . ForA = 1 — 28,8 > 1and B = —1, denote the class S*[1 — 28, —1] by M(). Equivalently, M(8) can be
expressed in the form

M(B) = {f € AN (zf/(z)) <B.(zc A)}.
f@

The class M(8) was investigated by Uralegaddi et al. [3], while a subclass of M(8) was investigated by Owa and Srivastava [4].
It should be noted that functions in the class M(8) and in general S*[A, B] need not be starlike. The class S*[A, B] unifies the
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classes S*(«) and M(B); this will not happen if the assumption is only that —1 < B < A < 1. Ma and Minda [5] have earlier
introduced and investigated the class S*(¢) of analytic functions f € 4 for which

#f'(2)
f@)

where ¢ is an analytic function with positive real part on A, ¢(0) = 1, ¢'(0) > 0, and ¢ maps A onto a region starlike with
respect to 1 and symmetric with respect to the real axis. The class S*(¢) contains many of the classes investigated in the
literature such as functions that are starlike (of order «), strongly starlike, parabolic starlike, and Janowski starlike (for real
constants A and B).

For0 < «a < 1, A > 0, Tuneski and Irmak [6] introduced and studied the class

< ¢), ze€A,

Gia = {f €A Z]}% {1 —a+azjﬂﬁ(z)} —(-w)|<rze A}.
The class §, ,, also includes several other classes investigated earlier, for example,
Grrj2 = {f € ;(2) {1 + Z]{/(iz))} 1l <2nz¢ A},
gmz{fe,ft: f((f%z/;()zz) <A,zeA},
§r1/0-y) = {f €A 21;2) {1 -v+ Zj{,ﬁ(iz))} —(I=py))<i2-vy) z€ A} :

These or related classes were investigated in [7-14].

Using the theory of first-order differential subordination, Tuneski and Irmak [6] and Tuneski [15] obtained the following
result of embedding the class §, , into the class S*[A, B].
Theorem 1 ([6, Theorem 2.2]). Let f € A, —1 <B <A <1l,and 1+ |A])/B+|A]) <a < 1.If
f@ zf" (2) 1+ Bz Z(A—B)

1—-o+a o ,

zf'(2) f'(2) 1+ Az (14 Az)?
then f € S*[A, BI. This result is sharp.

}<a+(1—2a)

As a consequence, the following result is obtained:

Corollary 1 ([6, Corollary 2.4]). Let —1 < B <A < 1and (1 + |A])/(3+ |A|]) < o < 1. Then

Qo= DA - (1 - 30)
A= (A—B) ATA (1.1)

is the greatest number such that §, , < S*[A, B].

Note that there was a typographic error in sign in the work of [6], and that expression (1.1) is the correct constant.
We now introduce a class of analytic functions defined by means of subordination.

Definition 1. For complex constants C and D with |[D| < 1,C # D, the class §,[C, D] consists of all functions f € 4
satisfying the subordination

@ {1_a+azf”(2)}<(1_a)l+Cz

zf'(2) f'@) 14Dz

For0 < o < 1,1 > 0, the class §4[1/(1 — @), 0] reduced to the class 4, , studied by Tuneski and Irmak [6]. In this
paper, we investigate the more general inclusion §,[C, D] C S*[A, B]. The following result will be required.

Theorem 2 ([16, Theorem 3.4h, p.132]). Let q be univalent in the unit disk A and ¥ and ¢ be analytic in a domain D containing
q(A) with p(w) # 0when w € q(A). Set Q(z) := zq' (2)¢(q(z)) and h(z) = ¥(q(z)) + Q(z). Suppose that either h is convex,
or Q is starlike univalent in A. In addition, assume that R[zh' (z)/Q(z)] > 0 for z € A.If p is analytic in A with p(0) = q(0),
p(A) € Dand

3 (p@) + 20 @)e(p() < ¥(@) +2q (2)¢q()), (1.2)
then p(z) < q(z) and q is the best dominant.
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2. Main results
We begin with the following sufficient condition for a function f € + to satisfy the subordination zf'(z) /f (z) < 1/q(2).
Theorem 3. Let o be a nonzero complex number. Let q be univalent and q(z) # 0in A, q(0) = 1and

m{qu”(z)} >max{0,m<1_2“>}. (2.1)
q ) o

If f € A satisfies the subordination

zgfz)) {1 —a+ aZ]J:/(iZ)) } <a+(1—-2x)qz) —azq(2), (2.2)
then

f@ 1

f@  q@

and 1/q is the best dominant.
Proof. Let the function p be defined by

f@)
= . 2.3
P& =5 (2.3)
A computation from (2.3) gives
zp'(z) _ #f'@) (1 n Zf”(Z)>
p@  f@ fr@ )
and hence
zf"(2) zp'(z) 1
1 = — —_—. 24
7o T e 24
Now (2.3) and (2.4) yield
f@ f'@)\ ~ o
) {1 —o+a ) } =o+ (1—-2x)p(z) —azp (2). (2.5)
Using (2.5), it follows that (2.2) becomes
a+(1—=20)pi) —azp'(2) < a+ (1 —2a)q(z) — azq' (2),
or
(1 =2a)p(2) —azp'(z) < (1 —20)q(2) — azq'(2). (2.6)

Define the functions @ and ¢ by
F(w) = (1 —20)w, o(w) = —«a
so that (2.6) becomes (1.2). Since o # 0, clearly p(w) # 0. Now let
Q) =20 (2)¢(q(2)) = —azq' (2)
h(z) :=9(q(2)) + Q@) = (1 - 2a)q(z) — azq'(2).
In view of (2.1), Q is starlike and
m[Zh(Z)} :m{wzi— 1_2“} >0,
Q(2) q o

The result now follows by an application of Theorem 2. O

Corollary 2. Let @ € C, —1 < B < A < 1, and further assume that

1\ 3
w( 1) <3t (2.7)
o 1+ |A|
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If f € A satisfies
@ {1 Cwi @
zf'(2) (@)
then f € S*[A, B]. The result is sharp.

1+ Bz zZ(A—B)
+ ,
1+ Az (1 + Az)?

}<a+(1—2a)

Proof. Let the function g be defined by q(z) = (1 + Bz)/(1 + Az). This function q is convex univalent and (2.7) yields

, zq"(2) 1—Az 1— |A| 1— 2«
R{1+ =N > > max | 0, N .
q(z) 14+ Az 1+ |A| o

The result now follows from Theorem 3. O

Remark 1. When « is real, Corollary 2 reduces to Theorem 1.

Theorem 4. Let A, B, C, D and « be real numbers satisfying |[D| < 1,C # D, |A] < 1,|B] < 1,A # Band o # 0. Let
[:=0Ca— 1%+ Qa—1)24%,] :=2Ba — NQ2a — DA, K := (C —D)(1 — a),L := A>’C(1 — &) — ADa(A — 2B) — ABD,
and M := 2AC(1 — &) — D(A + B) — Da(A — 3B). Further, when KL < 0 and |(A — B)*] — 2(K + L)M| < —8KL, assume that

—16KL[(A — B)’ I — M*(L — K)*] — [(A—B)*)] —2(K + L)M]* > 0
while in all other cases, let

|(A—B)Y —2(K +L)M| < (A— B)*I — M?> — (L+K)%.
Then 4,[C, D] C S*[A, B].
Proof. In view of Theorem 3, it is enough to show that

1+Cz (1+Bz)  az(A—B)
1—|—Dz<a+(1_2a)(1—|—Az) a2 h(z).

g@)=>10-0a)

Since g is univalent, the subordination g(z) < h(z) is equivalent to the subordination
z <g Y(h@)) = H@).
The proof will be completed by showing that |H(e!)| > 1 for all e [0, 27 ]. First note that
1—a+[A+B+a(A—3B)]z + [Ax(A — 2B) + AB]Z?

he = (1+ Az)? ’
and
-1 _ w4+ o — 1
£ =iy —pw
so that
H = A=BIGY =1 + Qo — DAzl

K + Mz + Lz2
Writing t = cos 6, it follows that
(I +]Jt)(A—B)?
|[Ke= + M + Le?|?
(I +]Jt)(A — B)?
4KLt2 4+ 2(K + L)Mt + M2 4+ (L — K)?°

IH(e")* =

Now |H(e'?)|? > 1provided at>+bt+c > 0,wherea = —4KL, b = (A—B)*] —2(K+L)M,andc = (A—B)*I—M?—(L—K)>.
Since

4ac — b?
min{at? + bt +c} =145 ° 97 0, |b| < 2a,
=t a+c —|b|, otherwise,

the inequality |[H(e'?)| > 1 s satisfied provided the conditions stated in Theorem 4 hold. O
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Remark 2. WhenD =0,C = /(1 —a),we havel = 3o — 1)?> + 2o — 1)24A%,] =2(Ba — 1)2a — DA, K = A, L = 1A%,
M = 2AA. Clearly KL = A%A% > 0. In this case, the condition in the hypothesis of Theorem 4 becomes

|(A — B)?] — 4AM*(1 + A%)| < (A — B)’I — 4A%2A2 — A2[4A% + (A2 — 1)?).
A computation shows that
Qa — 1A — (1 - 3a)

(1+|AD?
provided (1 + |A|)/(3 + |A|]) < @ < 1. Thus Theorem 4 reduces to [6, Corollary 2.4, p. 4].

A= (A—B)

Remark 3. In [17] and [18] a similar technique using Jack’s lemma was used to investigate Janowski starlikeness of the
Bernardi integral operator.
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